2 research outputs found

    Techno-Economic Assessment of Rooftop PV Systems in Residential Buildings in Hot–Humid Climates

    No full text
    The application of renewable energy has been an integral part of the sustainability drive in the building sector and solar photovoltaic (PV) is one of the most effective technologies in this respect. The present study aims to investigate the prospects of solar PV in residential buildings in the hot–humid climatic conditions. The study discusses the utilization of building roofs for the application of PV in terms of potential hurdles and utilization factor (UF). Technical performance of PV systems has also been investigated in terms of power output as well as the energy saved as a result of the shading impact of panels for two types of residential units, apartments and villas. Investigation of 70 sample residential buildings reveals the average UF of 0.21 and 0.28 for apartments and villas, respectively. For the case study of apartment and villa residential units, roof UF has been found to be 13% and 15% with a respective PV output of 6079 kWh/year and 6162 kWh/year. Potential PV output at the city level has also been estimated. A sensitivity analysis has been conducted to evaluate the impact of various cost and design parameters on the viability of PV systems

    Life Cycle Assessment of a Three-Bedroom House in Saudi Arabia

    No full text
    The building sector is one of the crucial stakeholders in the global energy and environmental scenario. Life cycle assessment (LCA) is a tool widely used to evaluate the environmental performance of buildings, materials and activities. Saudi Arabia has a rapidly growing construction sector with over $1 Trillion of ongoing projects. The housing sector, annually needing over 2.32 million new residential units in coming years, is yet to entertain environmental performance of buildings in its list of priorities. The present work undertakes a LCA study of a three-bedroom modern villa located in Dhahran. Providing the structural details of the villa, an account of the 18 main construction materials in terms of quantity and application has been produced. Embodied energy of these materials has been estimated adopting ‘cradle-to-gate’ approach. Environmental impacts of the materials have been modeled with the help of SimaPro software. The results suggest that concrete accounts for more than 43% of the total embodied energy of the house and is also the predominant material in terms of the overall environmental impacts. Steel is the second most prominent material both in terms of quantity and embodied energy
    corecore